
Readme – Pro TexturePlayer 1.1.5

Pro TexturePlayer provides a set of powerful image playback, display, and
loading APIs for your professional apps/games. Easily load and display image
sequence in your Unity application.

The easiest solution for displaying image banners, posters that load with
URL and local file path, or load images from the local folder and play like a
slideshow or just simply display them.

This package integrated with several important features that tackle many
issues for loading, displaying and managing images for your Unity app. Highly
optimized for best performance, ease of use, and help prevent app crash when a
large number of images are loaded.

Highlights
• Image Cache Management

Cache the downloaded images on local storage (Application Paths), so your app doesn't
need to re-download the images every time between runs.

• Memory Usage Optimization
Significantly less memory usage when multiple images loaded in one player. Ensure
better stability and performance.

• Texture Resize
Resize the loaded textures without changing the origin files, by inputting the target
width and height in the Play method.

• Texture Player Controls
Play, Pause, Resume, Stop, PlayForward, PlayBackward, Display particular image by
texture index, examples of Callbacks for handling events such as image click event.

Features

Pro Texture Player
• Play images with list/array of URL or local path.
• Play textures list/array.
• Play images from the local folder with the folder path (the application paths, not the

native gallery),
• Play images like a slideshow, or just simply display them.
• Playback Controls: Play, Pause, Resume, Stop, PlayForward, PlayBackward, etc.
• Customizable playback framerate.
• Trigger callbacks/events with the image ID of the particular image (e.g. click on the

image to trigger an event by its ID).
• Build-in image resize feature, easily constraint the size of all the images by specifying

the target width and height.
• Optimize Memory Usage option, significantly save the memory usage for loaded

textures in the scene.
• Supports display on UGUI Image & RawImage, Renderers(Cube, Plane, Sphere etc.);
• Displays on materials/objects that supports Texture2D or Sprite. Easy to extend with

the PlayerComponent.

Image Loader
• ImageLoader: load single image, support multiple instances for loading images.
• ImageQueuedLoader: load multiple images with a single API, supports limiting the

number of loaders, split loading process to avoid blocking the main thread when
loading a large number of images.

• ImageBatchLoader: wrapped the ImageLoader & ImageQueuedLoader for easily
loading multiple images. Load multiple images with a single API.

• Load image(s) from local(application paths), and load image(s) with Url(s) from web
using the same API.

• Detect actual image Extension Name and MIME Type.
• Easy, powerful images cache management.
• Flexible sequential file naming system (for batch download)
• Flexible settings:

Retry option
Timeout option
Cache mode: NoCache, UseCached, Replace
Cache file limit per folder
Cache as per URL, or Cache using specific Filename/Sequence
Particular cache(Save & Load) directory and folder
Sequential file naming formats
Min. keep file time & file expire(max.) time

Bonus Features
EasyIO Plugin: supports saving & loading text, class, and file byte array on different
platforms. Adds the ability to write files in IndexedDB, so the cache management
system can work correctly on WebGL.

(1) Pro TexturePlayer Components

1. Base: IMBX_PlayerComponent
The base class of the Pro TexturePlayer. Includes the Play methods, player control
methods, callback methods, and clear method. Also uses to hold the textures and
related variables. Extend with this component to support displaying textures on UI
components or other materials.

2. IMBX_PlayerImage
Extends the PlayerComponent, supports display textures on UGUI Image component.

3. IMBX_PlayerRawImage
Extends the PlayerComponent, supports display textures on UGUI RawImage
component.

4. IMBX_PlayerRenderer
Extends the PlayerComponent, supports display textures on Mesh Renderers such as
Plane, Cube, Sphere etc.

Integrate into your scene or prefab:

(2) Texture Player API
After adding a player component to the target object in your scene or prefab, reference it to
your script(see the provided example scenes). Then simply call the methods of the component
to play and control the player.

Play Methods:
Play(List<string>:imagePaths, float:fps, bool:optimizeMemoryUsage,

bool:ensureInSequence);

Play(List<string>:imagePaths, float:fps, bool:optimizeMemoryUsage,
int:maxUnifyWidth, int:maxUnifyHeight, bool:ensureInSequence);

Play(Texture2D[]:textures, float:fps, bool:optimizeMemoryUsage, int:maxUnifyWidth,
int:maxUnifyHeight);

Play(Texture2D[]:textures, float:fps, bool:optimizeMemoryUsage);

Play(string:fullFolderPath, float:fps, bool:optimizeMemoryUsage, int:maxUnifyWidth,
int:maxUnifyHeight, Enum.ImageFormatFiltering:imageFormatFilter,
int:maxNoOfImage, int:startIndex);

Play(string:fullFolderPath, float:fps, bool:optimizeMemoryUsage,
Enum.ImageFormatFiltering:imageFormatFilter,
int:maxNoOfImage, int:startIndex);

Callbacks:
SetOnPlayStartedCallback(Action<int, int>:onPlayStartedCallback);
This callback will be fired when the texture player started (once only). Returns the texture
width and height with the callback.

SetOnPlayingCallback(Action<TextureIMBX, int>:onPlayingCallback);
This callback will be fired per frame when the player is playing. Returns the currently
played texture and frame index with the callback.

SetOnLoadingCompleteCallback(Action:onLoadingCompleteCallback);
This callback will be fired when all the loading process finished.

Player Control Methods:
float PlaybackSpeed {get; set;}
bool IgnoreTimeScale {get; set;}
Pause();
Resume();
Stop();
PlayForward();
PlayBackward();
Reverse();
SetDisplayFrame(int:frameIndex);
Clear();

(3) Cache Management
Pro TexturePlayer provides highly customizable settings for image cache management per
folder. To modify the cache settings, just input appropriate values when calling the Play
methods. Or modify the LMGT(LoaderManagement object) just after the player is ready.

Example:
proTexturePlayer.LMGT.CacheMode = ImageLoader.CacheMode.UseCached;

• Cache Mode
ImageLoader.CacheMode : CacheMode
(The behavior for handling Load and Cache files. NoCache: do not auto save the image;
UseCached: use the locally cached file if exist; Replace: download and replace the
locally cached file is exist.)

• Cache Directory
string : CacheDirectory (Getter)
(The path for saving and loading images if the cache feature is enabled. Supports the
application paths only, eg. Application.persistentDataPath.)

FilePathName.AppPath : CacheDirectoryEnum
(The enum that determines which application path to load and save(cache) file to.)

• Sub-Folder
string : FolderName
(The sub-folder under cache directory for loading and storing(caching) files to.)

• Cache as per URL
bool : CacheAsPerUrl
(If 'true', for URL start with 'http', the loader will cache the image as per URL address.)

• Batch FileName Prefix (for batch loader)
string : FileNamePrefix
(The filename prefix for storing(caching) the image files. The final filename will be
combined by this prefix, separator, and the index together.)

• File Extension
string : FileExtension
(Suggest use .jpg or .png only)

• Number of Digits for the Index follow the Filename Prefix (for batch loader)
uint : FileIndexFormatDigitsCount
(eg. For digits count = 5, and index = 12, the result index string becomes 00012)

• File Name Starting Index (for batch loader)
uint : FileNameStartingIndex
(Set this value to set an offset for the filename index. The default starting index is 0.)

• Separator text between the File Name and Index (for batch loader)
string : FileNameAndIndexSeparator
(Please use filename friendly characters only)

• Max. Files Per Folder
uint : MaxCacheFilePerFolder
(The maximum number of files to cache per folder. Auto delete the older files if exceed
the set limit. Zero means no limit.)

• Min. Keep File Time
uint : MinTimeForKeepingFiles
(eg. m_MinTimeForKeepingFiles = 86400, 86400 seconds = 1 day
For images in the target folder that modified within 1 day will not be auto deleted.)

• File Expire Time
uint : MaxTimeForKeepingFiles
(eg. m_MaxTimeForKeepingFiles = 864000, 864000 seconds = 10 days
Delete images modified more than 10 days ago.)

(4) Extra
Set waiting time for a particular frame:
proTexturePlayer.SetFrameDelay(int:frameIndex, float:delayTimeInSeconds);

Set to display a particular frame:
proTexturePlayer.SetDisplayFrame(int:frameIndex);

Get the current frame index:
proTexturePlayer.m_CurrentFrameIndex;

Get total frame count:
proTexturePlayer.m_TotalFrame;

Add a texture to the player:
proTexturePlayer.RemoveTexture(int:index);

Remove a texture from the player:
proTexturePlayer.AddTexture(Texture2D:texture, float:interval);

(5) Image Loader Tools (Included)
Load images from local storage(in-app, Application paths), or download images from the web
with image full URL. Details please refer to the Readme document in the ImageLoader folder,
or visit our website.

https://www.swanob2.com/image-loader

THANK YOU
Thank you for using this package!
For any question and bug report please contact us at swan.ob2@gmail.com.
Remember to rate this asset on the Asset Store. Your review is always appreciated, and very
important to the development of this asset!

Review And Rating

Visit our asset page to find out more!
https://www.swanob2.com/assets

SWAN DEV

https://assetstore.unity.com/packages/tools/integration/pro-textureplayer-138895?aid=1100l33US
https://www.swanob2.com/assets
mailto:swan.ob2@gmail.com?subject=ProGIF%20issue

